On the Distribution of the Number of Points on Algebraic Curves in Extensions of Finite Fields

نویسندگان

  • OMRAN AHMADI
  • IGOR E. SHPARLINSKI
چکیده

Let C be a smooth absolutely irreducible curve of genus g ≥ 1 defined over Fq, the finite field of q elements. Let #C(Fqn) be the number of Fqn -rational points on C. Under a certain multiplicative independence condition on the roots of the zetafunction of C, we derive an asymptotic formula for the number of n = 1, . . . , N such that (#C(Fqn) − q − 1)/2gq belongs to a given interval I ⊆ [−1, 1]. This can be considered as an analogue of the Sato–Tate distribution which covers the case when the curve E is defined over Q and considered modulo consecutive primes p, although in our scenario the distribution function is different. The above multiplicative independence condition has, recently, been considered by E. Kowalski in statistical settings. It is trivially satisfied for ordinary elliptic curves and we also establish it for a natural family of curves of genus g = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM

We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Arithmetic Teichmuller Theory

By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...

متن کامل

The Large Sieve, Monodromy and Zeta Functions of Algebraic Curves, Ii: Independence of the Zeros

Using the sieve for Frobenius developed earlier by the author, we show that in a certain sense, the roots of the L-functions of most algebraic curves over finite fields do not satisfy any non-trivial (linear or multiplicative) dependency relations. This can be seen as an analogue of conjectures of Q-linear independence among ordinates of zeros of Lfunctions over number fields. As a corollary of...

متن کامل

On the maximum number of rational points on singular curves over finite fields

We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010